Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Anal Chim Acta ; 1248: 340938, 2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2242732

ABSTRACT

CRISPR-Cas12a (Cpf1) is widely used for pathogen detection. However, most Cas12a nucleic acid detection methods are limited by a PAM sequence requirement. Moreover, preamplification and Cas12a cleavage are separate. Here, we developed a one-step RPA-CRISPR detection (ORCD) system unrestricted by the PAM sequence with high sensitivity and specificity that offers one-tube, rapid, and visually observable detection of nucleic acids. In this system, Cas12a detection and RPA amplification are performed simultaneously, without separate preamplification and product transfer steps, and 0.2 copies/µL of DNA and 0.4 copies/µL of RNA can be detected. In the ORCD system, the activity of Cas12a is the key to the nucleic acid detection; specifically, reducing Cas12a activity increases the sensitivity of ORCD assay detection of the PAM target. Furthermore, by combining this detection technique with a nucleic acid extraction-free method, our ORCD system can be used to extract, amplify and detect samples within 30 min, as verified with tests of 82 Bordetella pertussis clinical samples with a sensitivity and specificity of 97.30% and 100% compared with PCR. We also tested 13 SARS-CoV-2 samples with RT-ORCD, and the results were consistent with RT-PCR.


Subject(s)
COVID-19 , Nucleic Acids , Humans , SARS-CoV-2 , RNA , Biological Assay , Nucleic Acid Amplification Techniques
2.
Sci China Chem ; 65(3): 630-640, 2022.
Article in English | MEDLINE | ID: covidwho-1669939

ABSTRACT

Outbreaks of both influenza virus and the novel coronavirus SARS-CoV-2 are serious threats to human health and life. It is very important to establish a rapid, accurate test with large-scale detection potential to prevent the further spread of the epidemic. An optimized RPA-Cas12a-based platform combined with digital microfluidics (DMF), the RCD platform, was established to achieve the automated, rapid detection of influenza viruses and SARS-CoV-2. The probe in the RPA-Cas12a system was optimized to produce maximal fluorescence to increase the amplification signal. The reaction droplets in the platform were all at the microliter level and the detection could be accomplished within 30 min due to the effective mixing of droplets by digital microfluidic technology. The whole process from amplification to recognition is completed in the chip, which reduces the risk of aerosol contamination. One chip can contain multiple detection reaction areas, offering the potential for customized detection. The RCD platform demonstrated a high level of sensitivity, specificity (no false positives or negatives), speed (≤30 min), automation and multiplexing. We also used the RCD platform to detect nucleic acids from influenza patients and COVID-19 patients. The results were consistent with the findings of qPCR. The RCD platform is a one-step, rapid, highly sensitive and specific method with the advantages of digital microfluidic technology, which circumvents the shortcomings of manual operation. The development of the RCD platform provides potential for the isothermal automatic detection of nucleic acids during epidemics. Electronic Supplementary Material: Supplementary material is available in the online version of this article at 10.1007/s11426-021-1169-1.

3.
Front Microbiol ; 12: 723818, 2021.
Article in English | MEDLINE | ID: covidwho-1581279

ABSTRACT

COVID-19 is a severe disease in humans, as highlighted by the current global pandemic. Several studies about the metabolome of COVID-19 patients have revealed metabolic disorders and some potential diagnostic markers during disease progression. However, the longitudinal changes of metabolomics in COVID-19 patients, especially their association with disease progression, are still unclear. Here, we systematically analyzed the dynamic changes of the serum metabolome of COVID-19 patients, demonstrating that most of the metabolites did not recover by 1-3 days before discharge. A prominent signature in COVID-19 patients comprised metabolites of amino acids, peptides, and analogs, involving nine essential amino acids, 10 dipeptides, and four N-acetylated amino acids. The levels of 12 metabolites in amino acid metabolism, especially three metabolites of the ornithine cycle, were significantly higher in severe patients than in mild ones, mainly on days 1-3 or 4-6 since onset. Integrating blood metabolomic, biochemical, and cytokine data, we uncovered a highly correlated network, including 6 cytokines, 13 biochemical parameters, and 49 metabolites. Significantly, five ornithine cycle-related metabolites (ornithine, N-acetylornithine, 3-amino-2-piperidone, aspartic acid, and asparagine) highly correlated with "cytokine storms" and coagulation index. We discovered that the ornithine cycle dysregulation significantly correlated with inflammation and coagulation in severe patients, which may be a potential mechanism of COVID-19 pathogenicity. Our study provided a valuable resource for detailed exploration of metabolic factors in COVID-19 patients, guiding metabolic recovery, understanding the pathogenic mechanisms, and creating drugs against SARS-CoV-2 infection.

4.
Microbiol Spectr ; 9(3): e0059721, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1532976

ABSTRACT

Early and effective identification of severe coronavirus disease 2019 (COVID-19) may allow us to improve the outcomes of associated severe acute respiratory illness with fever and respiratory symptoms. This study analyzed plasma concentrations of heat shock protein gp96 in nonsevere (including mild and typical) and severe (including severe and critical) patients with COVID-19 to evaluate its potential as a predictive and prognostic biomarker for disease severity. Plasma gp96 levels that were positively correlated with interleukin-6 (IL-6) levels were significantly elevated in COVID-19 patients admitted to the hospital but not in non-COVID-19 patients with less severe respiratory impairment. Meanwhile, significantly higher gp96 levels were observed in severe than nonsevere patients. Moreover, the continuous decline of plasma gp96 levels predicted disease remission and recovery, whereas its persistently high levels indicated poor prognosis in COVID-19 patients during hospitalization. Finally, monocytes were identified as the major IL-6 producers under exogenous gp96 stimulation. Our results demonstrate that plasma gp96 may be a useful predictive and prognostic biomarker for disease severity and outcome of COVID-19. IMPORTANCE Early and effective identification of severe COVID-19 may allow us to improve the outcomes of associated severe acute respiratory illness with fever and respiratory symptoms. Some heat shock proteins (Hsps) are released during oxidative stress, cytotoxic injury, and viral infection and behave as danger-associated molecular patterns (DAMPs). This study analyzed plasma concentrations of Hsp gp96 in nonsevere and severe patients with COVID-19. Significantly higher plasma gp96 levels were observed in severe than those in nonsevere patients, and its persistently high levels indicated poor prognosis in COVID-19 patients. The results demonstrate that plasma gp96 may be a useful predictive and prognostic biomarker for disease severity and outcome of COVID-19.


Subject(s)
Biomarkers/blood , COVID-19 Testing/methods , COVID-19/diagnosis , Membrane Glycoproteins/blood , Severity of Illness Index , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , Cytokines/blood , Female , Humans , Interleukin-6/blood , Male , Middle Aged , Monocytes , SARS-CoV-2/isolation & purification , Young Adult
5.
Cell Discov ; 7(1): 76, 2021 Aug 31.
Article in English | MEDLINE | ID: covidwho-1380898

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a broad clinical spectrum of coronavirus disease 2019 (COVID-19). The development of COVID-19 may be the result of a complex interaction between the microbial, environmental, and host genetic components. To reveal genetic determinants of susceptibility to COVID-19 severity in the Chinese population, we performed a genome-wide association study on 885 severe or critical COVID-19 patients (cases) and 546 mild or moderate patients (controls) from two hospitals, Huoshenshan and Union hospitals at Wuhan city in China. We identified two loci on chromosome 11q23.3 and 11q14.2, which are significantly associated with the COVID-19 severity in the meta-analyses of the two cohorts (index rs1712779: odds ratio [OR] = 0.49; 95% confidence interval [CI], 0.38-0.63 for T allele; P = 1.38 × 10-8; and index rs10831496: OR = 1.66; 95% CI, 1.38-1.98 for A allele; P = 4.04 × 10-8, respectively). The results for rs1712779 were validated in other two small COVID-19 cohorts in the Asian populations (P = 0.029 and 0.031, respectively). Furthermore, we identified significant eQTL associations for REXO2, C11orf71, NNMT, and CADM1 at 11q23.3, and CTSC at 11q14.2, respectively. In conclusion, our findings highlight two loci at 11q23.3 and 11q14.2 conferring susceptibility to the severity of COVID-19, which might provide novel insights into the pathogenesis and clinical treatment of this disease.

6.
J Adv Res ; 37: 209-219, 2022 03.
Article in English | MEDLINE | ID: covidwho-1330938

ABSTRACT

Introduction: The SARS-CoV-2 pandemic has endangered global health, the world economy, and societal values. Despite intensive measures taken around the world, morbidity and mortality remain high as many countries face new waves of infection and the spread of new variants. Worryingly, more and more variants are now being identified, such as 501Y.V1 (B.1.1.7) in the UK, 501Y.V2 (B.1.351) in South Africa, 501Y.V3 in Manaus, Brazil, and B.1.617/B.1.618 in India, which could lead to a severe epidemic rebound. Moreover, some variants have a stronger immune escape ability. To control the new SARS-CoV-2 variant, we may need to develop and redesign new vaccines repeatedly. So it is important to investigate how our immune system combats and responds to SARS-CoV-2 infection to develop safe and effective medical interventions. Objectives: In this study, we performed a longitudinal and proteome-wide analysis of antibodies in the COVID-19 patients to revealed some immune processes of COVID-19 patients against SARS-CoV-2 and found some dominant epitopes of a potential vaccine. Methods: Microarray assay, Antibody depletion assays, Neutralization assay. Results: We profiled a B-cell linear epitope landscape of SARS-CoV-2 and identified the epitopes specifically recognized by either IgM, IgG, or IgA. We found that epitopes more frequently recognized by IgM are enriched in non-structural proteins. We further identified epitopes with different immune responses in severe and mild patients. Moreover, we identified 12 dominant epitopes eliciting antibodies in most COVID-19 patients and identified five key amino acids of epitopes. Furthermore, we found epitope S-82 and S-15 are perfect immunogenic peptides and should be considered in vaccine design. Conclusion: This data provide useful information and rich resources for improving our understanding of viral infection and developing a novel vaccine/neutralizing antibodies for the treatment of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Epitopes , Humans , Immunity, Humoral , Immunoglobulin M , Proteome
7.
J Allergy Clin Immunol Pract ; 8(8): 2585-2591.e1, 2020 09.
Article in English | MEDLINE | ID: covidwho-609222

ABSTRACT

BACKGROUND: The clinical management of coronavirus disease 2019 (COVID-19) is dependent on understanding the underlying factors that contribute to the disease severity. In the absence of effective antiviral therapies, other host immunomodulatory therapies such as targeting inflammatory response are currently being used without clear evidence of their effectiveness. Because inflammation is an essential component of host antiviral mechanisms, therapies targeting inflammation may adversely affect viral clearance and disease outcome. OBJECTIVE: To understand whether the persistent presence of the virus is a key determinant in the disease severity during COVID-19 and to determine whether the viral reactivation in some patients is associated with infectious viral particles. METHODS: The data for patients were available including the onset of the disease, duration of viral persistence, measurements of inflammatory markers such as IL-6 and C-reactive protein, chest imaging, disease symptoms, and their durations among others. Follow-up tests were performed to determine whether the viral negative status persists after their recovery. RESULTS: Our data show that patients with persistent viral presence (>16 days) have more severe disease outcomes including extensive lung involvement and requirement of respiratory support. Two patients who died of COVID-19 were virus-positive at the time of their death. Four patients demonstrated virus-positive status on the follow-up tests, and these patient samples were sent to viral culture facility where virus culture could not be established. CONCLUSIONS: These data suggest that viral persistence is the key determining factor of the disease severity. Therapies that may impair the viral clearance may impair the host recovery from COVID-19.


Subject(s)
Coronavirus Infections/physiopathology , Inflammation/physiopathology , Pneumonia, Viral/physiopathology , Adolescent , Adult , Aged , Betacoronavirus , C-Reactive Protein/immunology , COVID-19 , Child , Child, Preschool , Comorbidity , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Female , Glucocorticoids/therapeutic use , Humans , Infant , Inflammation/epidemiology , Inflammation/immunology , Inflammation Mediators/immunology , Interleukin-6/immunology , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Real-Time Polymerase Chain Reaction , Respiration, Artificial , SARS-CoV-2 , Severity of Illness Index , Young Adult
8.
JCI insight ; 2020.
Article | WHO COVID | ID: covidwho-324364

ABSTRACT

BACKGROUND: Severe acute respiratory coronavirus 2 (SARS-CoV-2) caused coronavirus disease 2019 (COVID-19) has become a pandemic. This study addressed the clinical and immunopathological characteristics of severe COVID-19. METHODS: Sixty-nine COVID-19 patients were classified into as severe and non-severe groups to analyze their clinical and laboratory characteristics. A panel of blood cytokines was quantified over time. Biopsy specimens from two deceased cases were obtained for immunopathological, ultrastructural, and in situ hybridization examinations. RESULTS: Circulating cytokines, including IL8, IL6, TNFα, IP10, MCP1, and RANTES, were significantly elevated in severe COVID-19 patients. Dynamic IL6 and IL8 were associated with disease progression. SARS-CoV-2 was demonstrated to infect type II, type I pneumocytes and endothelial cells, leading to severe lung damage through cell pyroptosis and apoptosis. In severe cases, lymphopenia, neutrophilia, depletion of CD4+ and CD8+ T lymphocytes, and massive macrophage and neutrophil infiltrates were observed in both blood and lung tissues. CONCLUSIONS: A panel of circulating cytokines could be used to predict disease deterioration and inform clinical interventions. Severe pulmonary damage was predominantly attributed to both SARS-CoV-2 caused cytopathy and immunopathologic damage. Strategies that encourage pulmonary recruitment and overactivation of inflammatory cells by suppressing cytokine storm might improve the outcomes of severe COVID-19 patients.

SELECTION OF CITATIONS
SEARCH DETAIL